Worksheet for 2020-03-18

Conceptual questions

Problems marked with "**" are more difficult and/or more tangential to the main course content.

Question 1. Suppose that f is a function such that $\partial f / \partial x>0$ points. Suppose we approximate $\int_{0}^{6} g(x) \mathrm{d} x$ by breaking up always and $\partial f / \partial y<0$ always. One can use a Riemann sum to approximate $\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y$ by breaking up the square into (for example) nine equally sized smaller squares.
(a) If the goal is to guarantee an overestimate of the integral, where should the sample points be chosen?
(b) What if we want to underestimate?
the interval into two equally sized pieces, taking 2,4 as sample points.

If we multiply these approximations, we get an approximation for

$$
\int_{0}^{6} f(x) \mathrm{d} x \int_{0}^{6} g(x) \mathrm{d} x=\int_{0}^{6} \int_{0}^{6} f(x) g(y) \mathrm{d} x \mathrm{~d} y
$$

Question 2. ${ }^{* *}$ Let f and g be two single-variable functions. Explain how this approximation is also a Riemann sum. Suppose we approximate $\int_{0}^{6} f(x) \mathrm{d} x$ by breaking up the interval into three equally sized pieces, and taking $1,2,6$ as sample
(What's the corresponding decomposition of the integration region? What are the sample points?)

Computations

Problem 1. Reverse the order of integration:

$$
\int_{0}^{1} \int_{0}^{2 y} f(x, y) \mathrm{d} x \mathrm{~d} y+\int_{1}^{3} \int_{0}^{3-y} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{?}^{?} \int_{?}^{?} f(x, y) \mathrm{d} y \mathrm{~d} x .
$$

Problem 2. Evaluate the following double integral:

$$
\int_{0}^{1} \int_{0}^{1} e^{\max \left(x^{2}, y^{2}\right)} \mathrm{d} x \mathrm{~d} y
$$

You should break up the integral into two pieces: one for the region where $x \geq y$ and the other for the region where $x \leq y$.

